Gas Sensing Studies of an n-n Hetero-Junction Array Based on SnO2 and ZnO Composites
نویسندگان
چکیده
A composite metal oxide semiconductor (MOS) sensor array based on tin dioxide (SNO2) and zinc oxide (ZnO) has been fabricated using a straight forward mechanical mixing method. The array was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The array was evaluated against a number of environmentally important reducing and oxidizing gases across a range of operating temperatures (300–500 ̋C). The highest response achieved was against 100 ppm ethanol by the 50 wt% ZnO–50 wt% SnO2 device, which exhibited a response of 109.1, a 4.5-fold increase with respect to the pure SnO2 counterpart (which displayed a response of 24.4) and a 12.3-fold enhancement with respect to the pure ZnO counterpart (which was associated with a response of 8.9), towards the same concentration of the analyte. Cross sensitivity studies were also carried out against a variety of reducing gases at an operating temperature of 300 ̋C. The sensors array showed selectivity towards ethanol. The enhanced behaviour of the mixed oxide materials was influenced by junction effects, composition, the packing structure and the device microstructure. The results show that it is possible to tune the sensitivity and selectivity of a composite sensor, through a simple change in the composition of the composite.
منابع مشابه
Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances
One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly di...
متن کاملFabrication of Microfibre-nanowire Junction Arrays of ZnO/SnO2 Composite by the Carbothermal Evaporation Method
A cotton-like ZnO/SnO2 nanocomposite was grown by the carbothermal evaporation of a mixture of ZnO and SnO2 powders at 1100oC by the vapour-liquidsolid process, in which the Sn particles produced by the reduction of SnO2 act as the catalyst. Field-emission scanning electron microscope images suggest that the composites are made of microfibre-nanowire junction arrays. The structure is formed due...
متن کاملCalcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application
The SnO₂/g-C₃N₄ composites were synthesized via a facile calcination method by using SnCl₄·5H₂O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission scanning electron microscopy and transmission electron microscopy (FESEM and TEM), energy dispersive spectrometry (EDS), thermal...
متن کاملZnO nanoparticles as sensing materials with high gas response for detection of n-butanol gas
The high crystallinity ZnO nanoparticles with an average particle diameter 30 nm have been successfully synthesized with a surfactant-mediated method. The cationic surfactant (cetyltrimethylammonium bromide, CTAB) and the hydrous metal chlorides (ZnCl2⋅2H2O) appear to be the good candidates for obtaining a high yield of nanoparticles. The structural and morphological characterizations were carr...
متن کاملElectrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity
In₂O₃/SnO₂ composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In₂O₃/SnO₂ hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer-Emmett-Tell...
متن کامل